

BIOORGANIC & MEDICINAL CHEMISTRY

Bioorganic & Medicinal Chemistry 11 (2003) 139–143

Trihalobenzocycloheptapyridine Analogues of Sch 66336 as Potent Inhibitors of Farnesyl Protein Transferase

F. George Njoroge,* Bancha Vibulbhan, Patrick Pinto, Corey L. Strickland, W. Robert Bishop, Paul Kirschmeir, V. Girijavallabhan and Ashit K. Ganguly

Schering-Plough Research Institute, Departments of Chemistry and Tumor Biology, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA

Received 19 March 2002; accepted 30 April 2002

Abstract—SCH 66336 is a trihalo tricyclic compound that is currently undergoing Phase II clinical trials for the treatment of solid tumors. Modifications of SCH 66336 by incorporating such groups as amides, acids, esters, ureas and lactams off the first or the distal piperidine (from the tricycle) provided potent FPT inhibitors some of which exhibited good cellular activity. A number of these compounds incorporate properties that might improve pharmacokinetic stability of these inhibitors by virtue of their increased solubility or by their change in log P.

© 2002 Elsevier Science Ltd. All rights reserved.

It has become evident that inhibition of Farnesyl Protein Transferase (FPT), an enzyme that plays a critical role in cell proliferation, could lead to development of potent anti-tumor agents. A number of FPT inhibitors, have already been advanced to clinical trials in human. Some of these compounds are peptidomimetics whose structure has been derived from the ras-CAAX motif with the appropriate modifications to provide pharmacokinetically more stable targets. Our group has currently advanced SCH 66336, a non-peptidic benzocycloheptapyridine analogue for further clinical studies. As summarized below, SCH 66336 inhibits FPT with $IC_{50} = 1.9 \, \text{nM}$, is 76% bioavailable in mice and as previously reported, is effective in stopping and regressing a variety of tumors in rodents.

Based on information obtained from SCH 66336, we have further explored modifications off the proximal and the distal piperidine moiety (from the tricycle) in an effort to develop compounds with better solubility, bioavailability and pharmacokinetic profile than SCH 66336. Herein we describe our work towards synthesis of amides, carboxylic acids, esters, ureas, and lactams as potent FPT inhibitors.

Chemistry

A representative synthetic protocol of target molecules bearing a carboxylic acids, esters and amides off the first piperidine (from the tricycle) starts from the previously described amine 14 and was carried out as outlined in Scheme 1. Thus, coupling of amine 1⁴ with carboxylic acid half esters in an EDCI mediated fashion provided esters of type 2a. Hydrolysis of 2a with NaOH or LiOH in either MeOH or EtOH provided the carboxylic acids of type 2b. Primary amides of type 2c were prepared from coupling of carboxylic acids 2b with NH₄Cl in an EDCI mediated reactions. Other analogues were prepared in the same way using appropriately spaced HOOC(CH₂)_nCOOMe half ester to give compounds of type A listed in Table 1. Synthesis of carboxylic acids, esters, amides off the distal piperidine, were prepared from previously described amine 3⁴ in a similar manner to analogues in Scheme 1 to give compounds of type B listed in Table 2.

^{*}Corresponding author. Tel.: +1-908-740-3121; fax: +1-908-740-7152; e-mail: george.njoroge@spcorp.com

Scheme 1. Reagents and conditions: (a) HOOC(CH₂)_nCOOCH₃, NMM, HOBT, EDCl; (b) EtOH,NaOH (c) NH₄Cl, NMM, HOBT, EDCl.

Preparation of five- and six-membered lactams were prepared as outlined in Scheme 2, thus amine 1⁴ was coupled to BOC protected amino acids to provide derivative of type 5. Removal of the BOC group gave amine 6 that was reacted with either bromobutanoyl or pentanoyl bromide to give an intermediates of type 6a that were subsequently cyclized to lactams of type 7 by treatment with NaH.⁵ In the case of five- and six-membered ring cyclic ureas, amine 6 was reacted with either

Table 1. FPT, COS and soft agar activities of tricyclic esters, acids and amides from piperidine of type $A^{\rm a}$

Compd.	n	R	FPT IC ₅₀ (nM)	COS IC ₅₀ (nM)	Soft agar IC ₅₀ (nM)	
2b	1	ONa	120	NA	NA	
2c	1	NH_2	68	NA	NA	
2d	2	OCH_3	9.2	1000	> 500	
2e	2	ONa	270	NA	> 500	
2f	2	NH_2	14	NA	NA	
2g	3	ONa	44	NA	NA	
2h	3	NH_2	11	NA	NA	
2i	4	OCH_3	150	NA	NA	
2j	4	ONa	17	NA	NA	
2k	4	NH_2	7.7	140	> 500	
21	5	OCH_3	11	NA	NA	
2m	5	ONa	9.1	300	> 500	
2n	5	NH_2	3.3	15	380	

^aFollowing the procedure outlined in Scheme 1, using HOOC– $(CH_2)_n$ –COOCH₃, where n = 1-5 compounds **2b–n** were prepared.

Scheme 2. Reactions and conditions: (a) HOOC-CH₂-NH-Boc, DMF, HOBT, EDCl; (b) CH_2Cl_2 , TFA, $0^{\circ}C$, $24\,h$; (c) $CICO(CH_2)_{3-4}Br$, CH_2Cl_2 ; (d) $OCN(CH_2)_{3-4}Cl$, CH_2Cl_2 ; (e) THF, NaH (95%).

chloropropyl or butylisocyanate to give the intermediate bromo ureas of type **6b**. As in the lactam case, treatment of **6b** with NaH provided the desired cyclic ureas of type **8** (Scheme 2).⁶ Biological data on compounds of type C prepared in this series is summarized in Table 3. Using similar chemistry as used for preparation of compounds of type C above, but substituting amine **1** with amine **3**, compounds of type D listed in Table 4 were prepared.

Table 2. FPT,COS and soft agar activities of tricyclic esters, acids and amides from piperidine of type B^a

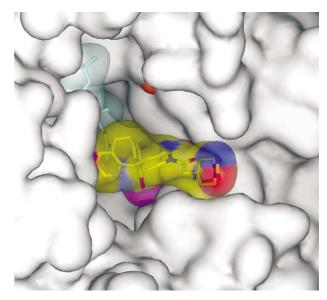
Compd.	n	R	FPT IC ₅₀ (nM)	COS IC_{50} (nM)	Soft agar IC ₅₀ (nM)
4a	a 1		< 3	125	NA
4b	1	OLi	0.9	250	> 500
4c	1	NH_2	3.3	< 10	95
4d	2	OCH_3	5.1	39	250
4e	2	ONa	1.2	75	> 500
4f	2	NH_2	2.5	25	220
4g	3	Oet	4.8	10	410
4h	3	Ona	1.1	18	350
4i	3	NH_2	3.9	35	395
4j	4	OCH_3	5.3	10	320
4k	4	Ona	3.6	30	480
41	4	NH_2	3.5	30	230
4m	5	OCH_3	6.9	10	220
4n	5	Ona	1.4	25	250
40	5	NH_2	3.3	19	240

^aFollowed the procedure outlined in Scheme 2, using HOOC– $(CH_2)_n$ –COOCH₃, where n = 1-5 compounds **4a**–o were prepared.

Biological Results and Discussions

Compounds thus prepared were tested for their ability to inhibit the transfer of [³H]-farnesyl from farnesyl diphosphate to His⁶-H-Ras-CVLS, a process that is mediated by farnesyl protein transferase (FPT) using conditions previously described. These compounds were also evaluated in a cellular ras processing assay (Cos-7 monkey kidney cells transiently expressing Ha-Ras-[Val12]CVLS) and a colony forming assay (soft agar assay) as previously described. Biological data for these compounds are reported in Tables 1–4.

Tricyclic Esters, Acids and Amides


As shown in Tables 1 and 2, a variety of esters, acids, amides were prepared both from the proximal piperidine (Structure type A) as well as from the distal piperidine (Structure type B). In general, compounds of type B demonstrated better FPT and cellular activity than the corresponding compounds of structure type A. It is also notable that in structures of type B the COS and soft agar inhibitory activities of amides and esters are better than those of the corresponding carboxylic acids, especially, with compounds where n=1 or 2. Compound 4c, a one-carbon methylene spacer exhibited the best FPT and cellular inhibitory activity in this series with FPT $IC_{50} = 3.3 \text{ nM}$, COS $IC_{50} < 10 \text{ nM}$ and Soft agar IC₅₀ 95 nM. In general, the length of the spacer in this series of compounds did not have any profound effect on either FPT or cellular activity.

The structure of **SCH66336** bound to FPTase⁹ (Fig. 1) demonstrated that compounds with further substitutions on the distal piperidine should be well tolerated. The distal piperidine is directed in a shallow channel

Table 3. FPT, COS and soft agar activities of tricyclic cyclic ureas and lactams—type C^a

Compd.	n	у	X	$\begin{array}{c} FPT \\ IC_{50} \left(nM \right) \end{array}$	COS $IC_{50} (nM)$	Soft agar IC ₅₀ (nM)
7a	1	1	CH ₂	4	500	> 500
7b	2	1	CH_2	22	NA	NA
7c	3	1	CH_2	85	NA	NA
7d	1	2	CH_2	3	60	300
7e	2	2	CH_2	19	NA	NA
7f	3	2	CH_2	80	NA	NA
8a	1	1	NH	23	NA	NA
8b	2	1	NH	19	NA	NA
8c	3	1	NH	16	NA	145
8d	1	2	NH	3	16	NA
8e	2	2	NH	20	NA	NA
8f	3	2	NH	56	NA	NA

^aFollowing the procedure outlined in Scheme 2, using HOOC– $(CH_2)_n$ –NH–BOC and Cl–CO– $(CH_2)_y$ –Br or O=C= N– $(CH_2)_y$ –Br, where n=1–3 and y=1–2 compounds 7a–f and 8a–f were prepared.

Figure 1. Structure of SCH66336 (yellow) and FPP (blue) bound to FPTase (white).

away from the core of FPTase into bulk solvent. Thus compounds of varying length are accommodated with little change in the FPTase affinity. The larger compounds (2i–2n and 4j–4o) just extend into bulk solvent. Thus, the distal piperidine can be modified to test its effect on solubility, bioavailability and pharmacokinetics almost independent of FPTase affinity.

Tricyclic Ureas and Lactams

Evaluation of FPT activity of lactams of structure type C (Table 3, where $X = CH_2$) revealed that the length of the spacer (n) in both the five- and six-membered ring

Table 4. FPT, COS and soft agar activities of tricyclic cyclic ureas and lactams—type D^a

Compd.	n	у	X	FPT IC ₅₀ (nM)	COS IC ₅₀ (nM)	Soft agar IC ₅₀ (nM)
9a	1	1	CH ₂	3.2	10	256
9b	2	1	CH_2	3.0	17	350
9c	3	1	CH_2	4.2	14	500
9d	1	2	CH_2	1.4	19	> 500
9e	2	2	CH_2	3.6	18	> 500
9f	3	2	CH_2	5.3	41	> 500
10a	1	1	NH	NA	NA	NA
10b	2	1	NH	7.4	160	500
10c	3	1	NH	NA	NA	NA
10d	1	2	NH	2.5	18	500
10e	2	2	NH	2.7	68	500
10f	3	2	NH	8.2	43	500

^aFollowed the procedure outlined in Scheme 2, using HOOC–(CH₂)_n–NH–BOC and Cl–CO–(CH₂)_y–Br or O=C=N–(CH₂)_y–Br, where n=1-3 and y=1-2 compounds **9a–9f** and **10a–f** were prepared.

was important. The shorter the spacer the more potent were the compounds. Thus, in the five-membered ring lactams (y=1), the order of FPT activity was 7a > 7b > 7c. Similarly, in the six-membered ring lactams (y=2), the order of FPT activity was 7d > 7e > 7f. In the case of cyclic urea of structure type D (Table 3, compounds 8a-f), the length of the spacer (n) was not critical for enhanced FPT activity. However, the six-membered urea 8d (IC₅₀ 3 nM) with a single methylene spacer was slightly more active than analogous compounds in that series.

In compounds of structure type D (Table 4), the FPT activity for both the five- and the six-membered ureas and lactams were found to be very similar. The length of spacer (n) did not impart any advantages in either FPTor cellular activity of these compounds.

Conclusions

We have examined a number or acids, esters, amides, cyclic ureas and lactams for their FPT and cellular inhibitory activity. In all the cases examined, introduction of the above functionalities off the distal piperidine (from tricycle) provided inhibitors that are in general more potent than those off the first (proximal)piperidine. The FPT and cellular activities of compound $4c^{10}$ were equivalent to that of SCH 66336 and is therefore a potential candidate for further pharmacokinetic evaluation.

Experimental

Preparation of representative compounds

Methyl-4-(3,10-dibromo-8-chloro-6,11-dihydro-5H-benzo [5,6]cyclo-hepta [1,2-b]pyridin-11(R)-yl)- γ oxo-1-piperidine butanoate (2d). To a stirred solution of amine 1 (0.30 g, 0.64 mmol) in anhydrous DMF (10.0 mL) under nitrogen inlet at room temperature, was added 4-methyl morpholine (0.08 g, 0.83 mmol), HOBT (0.112 g, 0.83 mmol), EDCI (0.158 g, 0.83 mmol) and monomethyl succinate (0.11 g, 0.83 mmol). The resulting solution was stirred at room temperature overnight and then concentrated to dryness, followed by extraction with CH₂Cl₂-H₂O. The combined organic layer was then washed with saturated NaHCO₃, 10% Na₂H₂PO₄, dried over MgSO₄, filtered and concentrated to dryness to give compound 2d as a white solid (0.27 g, 72%) yield); mp 78.7–79.5 °C; IR (KBr) ν 3434, 2993, 2945, 2850, 1737, 1643, 1580, 1551, 1437, 1367, 1205, 1207, 1160 cm⁻¹; ¹H NMR (CDCl₃): 1.2–1.55 (4H, m), 2.2– 2.4 (2H, m), 2.45–2.65 (4H, m), 2.65–3.0 (4H, m), 3.2– 3.3 (1H,tt, J=3.5, 15), 3.67 (3H, s), 3.8 (1H, t, J=7.5), 4.4–4.6 (1H, m), 4.85 (1H, d), 7.05 (1H, s), 7.4 (1H, s), 7.5 (1H, d), 8.4 (1H, s); ¹³C NMR (CDCl₃) δ 28.4; 29.5; 31.4; 32.3; 32.5; 42.5; 45.7; 52.2; 119.4; 127.7; 129.5; 129.6; 131.6; 131.6; 133.6; 135.9; 137.6; 142.1; 142.3; 147.6; 155.1; 169.7; 174.1; MS (FAB) m/z 584.9 (M+H)⁺.

Compounds 2i, 2l, 4a, 4d, 4j, and 4m were prepared in a similar way.

4-(3,10)-Dibromo-8-chloro-6,11-dihydro-5H-benzo[5,6] cyclohepta[1,2-b] pyridin-11(R)-yl)-\gamma oxo-1-piperidine butanoic acid (2e). To a stirred solution of compound **2d** (0.25 g, 0.43 mmol) in EtOH (10 mL, 200 proof) at room temperature, was added NaOH (0.02 g, 0.51 mmol) and H₂O (0.6 mL). The resulting solution was stirred at room temperature overnight, then concentrated to dryness and dried under vacuum to give **2e** as a light yellow solid (0.23 g, 94% yield); mp 270 °C–decomposed; IR (KBr) v 3417, 1919, 2852, 1850, 1439, 968 cm⁻¹; MS (FAB): m/z 570.9 (M+H)⁺

Compounds 2b, 2g, 2j, 2m, 4b, 4e, 4h, 4k and 4n were prepared in a similar way.

4-(3,10)-Dibromo-8-chloro-6,11-dihydro-5H-benzo[5,6]cyclohepta[1,2-b] pyridin-11(R)-yl)- γ oxo-1-piperidine butanamide (2f). To a stirred solution of compound 2e (0.23 g, 0.40 mmol) in anhydrous DMF (10 mL) under nitrogen inlet at room temperature, was added 4-methyl $(0.05 \,\mathrm{g},$ 0.52 mmol), HOBT morpholine 0.52 mmol), EDCI (0.10 g, 0.52 mmol) and ammonium chloride (0.028 g, 0.52 mmol). The resulting solution was stirred at room temperature overnight and then concentrated to dryness, followed by extraction with CH₂Cl₂-H₂O. The combined organic layer was then washed with saturated NaHCO₃, 10%Na₂H₂PO₄, brine, dried over MgSO₄, filtered and concentrated to dryness to give a crude material. The crude product was purified by column chromatography on silica gel, eluting with 5%MeOH-NH₃/95%CH₂Cl₂ to give 2f as off white solid (0.051 g, 45% yield); mp 134.1–135.0 °C; IR (KBr): v 3407, 3198, 2938, 2851, 1673, 1633, 1552, 1439, 1271, 1206 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): 1.3–1.7 (4H, m); 2.3–2.6 (6H, m), 2.7–3.0 (4H, m), 3.2–3.4 (1H, tt), 3.6 (1H, t), 3.85 (1H, t), 4.5–4.65 (1H, m), 4.8–5.0 (1H, d), 5.4 (1H, s), 6.15 (1H, s), 7.2 (1H, s), 7.5 (2H, d), 8.45 (1H, s), ¹³C NMR (CDCl₃): δ 28.7, 30.8, 31.8, 32.13, 41.9, 45.3, 57.9, 118.9, 127.2, 129.2, 131.2, 133.2, 141.7, 142.5, 147.3, 154.69, 169.9, 174.9; MS (FAB) m/z 570.0 (M+H)⁺.

Compounds 2c, 2h, 2k, 2n, 4c, 4f, 4I, 4l, and 4o were prepared in a similar way.

4-(3,10-Dibromo-8-chloro-6,11-dihydro-5H-benzo[5,6] cyclohepta[1,2-b]pyridin-11(R)-yl)-1-[2-oxo-1-piperidinyl]acetyl piperidine (7d). To a stirred solution of amine 1 (1.50 g, 3.20 mmol) in anhydrous DMF (30 mL) under nitrogen inlet at room temperature, was added 4-methyl morpholine $(0.42 \,\mathrm{g},$ 4.1 mmol), **HOBT** (0.56 g,4.1 mmol), EDCI (0.79 g, 4.1 mmol) and BOC-glycine (0.73 g, 4.1 mmol). The resulting solution was stirred at room temperature overnight and then concentrated to dryness, followed by extraction with CH₂Cl₂-H₂O. The combined organic layer was then washed with saturated NaHCO₃, 10% Na₂H₂PO₄, dried over MgSO₄, filtered and concentrated to dryness to give compound 5 as a white solid (2.2 g, $MH^{+} = 628$). Compound 5 was dissolved in 20 mL of CH₂Cl₂ and the reaction mixture cooled to 0 °C. TFA (10 mL) was added and reaction mixture stirred for 2h. It was then basified with NaOH(50% w/w) and the aqueous phase extracted with CH₂Cl₂. The organic phase was dried over MgSO₄ and concentrated to give $2.04 \,\mathrm{g}$ of 6 (MH⁺ = 528. To a stirred solution of compound 6 (0.40 g, 0.76 mmol) in CH₂Cl₂ (10 mL) under nitrogen at room temperature 5-bromovaleryl chloride added $(0.15 \,\mathrm{mL},$ 1.13 mmol) and Et₃N (0.23 mL, 1.67 mmol). The resulting solution was stirred at room temperature overnight and washed with saturated NaHCO₃. The combined organic layer was dried over MgSO₄, filtered and concentrated to dryness to give compound 6a (0.53 g, $MH^{+} = 690$) as a yellow solid. To a stirred cooling solution of compound 6a (0.49 g, 0.76 mmol) in THF (10 mL) under nitrogen at −10 °C was added 95% NaH solution (0.09 g, 3.8 mmol). The resulting solution was stirred at room temperature overnight and concentrated to dryness, followed by extraction with EtOAc-satd Na₂SO₄ and CH₂Cl₂. The combined organic layer was dried over Na₂SO₄, filtered, concentrated to dryness and purified by column chromatography on silica gel, eluting with 4%MeOH-NH₃/CH₂Cl₂ to give compound 7d (0.233 g, 50% yield) as a white solid; mp 138.8–139.5 °C; IR (KBr): v 3443, 3041, 2940, 2863, 1640, 1580, 1493, 1441, 1350, 1272, 1160, 1094; ¹H NMR (300 MHz, CDCl₃): 1.2–1.5 (8H, m), 1.65 (1H, m), 2.0 (2H, m), 2.15-2.4 (4H, m), 2.7-3.0 (3H, m), 3.2-3.5 (2H, m), 3.5-3.7 (1H, m); 3.8 (1H, s), 4.5 (1H, d), 4.7 (1H, d), 7.05 (1H, s), 7.45 (1H, d), 7.55 (1H, s), 8.4 (1H, m), ¹³C NMR (CDCl₃): δ 21.7, 23.5, 30.4, 31.2, 31.4, 32.15, 32.4, 32.5, 42.3, 42.4, 42.6, 45.2, 45.4, 48.7, 49.4, 49.5, 58.1, 119.4, 129.5, 129.6, 131.5, 131.6, 133.6, 147.5; MS (FAB) m/z 610 (M + H)⁺.

Compounds 7a-c, 7e, 7f, and 9a-f, were prepared in a similar way.

4-(3,10-Dibromo-8-chloro-6,11-dihydro-5H-benzo[5,6] cyclohepta[1,2-b]pyridin-[1-(R)-y]-1-[(hexahydro-2-oxo-1-y]pirimidinyl)acetyl|piperidine (8d). To a stirred solution of compound 6 (0.40 g, 0.76 mmol) in CH₂Cl₂ (10 mL) under nitrogen at room temperature was added 3-chloropropyl isocyanate (0.16 mL, 1.52 mmol). The resulting solution was stirred at room temperature overnight and washed with saturated NaHCO₃. The combined organic layer was dried over MgSO₄, filtered and concentrated to dryness to give compound 6b $(0.51 \text{ g}, \text{ MH}^+ = 649)$ as a yellow solid. To a stirred cooling solution of compound 6b (0.49 g, 0.76 mmol) in THF (10 mL) under nitrogen at −10 °C was added 95% NaH solution (0.09 g, 3.8 mmol). The resulting solution was stirred at room temperature overnight and concentrated to dryness, followed by extraction with EtOAcsatd Na₂SO₄ and CH₂Cl₂. The combined organic layer

was dried over Na₂SO₄, filtered, concentrated to dryness and purified by column chromatography on silica gel, eluting with 4%MeOH–NH₃/CH₂Cl₂ to give compound **8d** (0.26 g, 56% yield) as white solid; mp 155.6–156.1 °C; IR (KBr); v 3440, 3059, 2938, 2885, 1651, 1580, 1551, 1514, 1444, 1305, 1273, 1204, 1169; ¹H NMR (300 MHz, CDCl₃): 1.35 (3H, m), 1.5 (3H, m), 1.95 (3H, m), 2.2–1.5 (3H, m), 2.7–2.89 (2H, m), 2.9–3.0 (1H, m), 3.15–3.41 (8H, m), 3.5–3.65 (2H, m), 3.75 (2H, d), 4.0 (2H, q), 4.2 (2H, q), 4.5 (1H, m), 4.85 (2H, d), 7.1(1H, s), 7.5 (2H, d), 8.4 (1H, s), MS (FAB): *m/z* 611 (M+H)⁺

Compounds 8a-c, 8e, 8f, and 10a-f, were prepared in a similar way.

Uncited References

bib 10 is not cited in text

References and Notes

- 1. (a) Barbacid, M. *Annu. Rev. Biochem.* **1987**, *56*, 779. (b) Bourne, H. R.; Saunders, D. A.; McCormick, F. *Nature* **1990**, *348*, 125. (c) Hall, A. *Science* **1990**, *249*, 635.
- 2. Leonard, D. M. J. Med. Chem. 1997, 40, 2971.
- 3. Sebolt-Leopold, J. S. Emerg. Drugs 1998, 271.
- 4. Njoroge, F. G.; Taveras, A. G.; Kelly, K.; Remiszewski, S.; Mallams, A. K.; Wolin, R.; Afonso, A.; Cooper, A. C.; Rane, D. F.; Liu, Y-T.; Wong, J.; Vibulbhan, B.; Pinto, P.; Deskus, J.; Alvarez, C. S.; del Rosario, J.; Connolly, M.; Wang, J.; Desai, J.; Rossman, R. R.; Bishop, W. R.; Patton, R.; Wang, L.; Kirschmeier, P.; Bryant, M. S.; Nomeir, A. A.; Lin, C.-C.; Liu, M.; McPhail, A. T.; Doll, R. J.; Girijavallabhan, V. M.; Ganguly, A. K. J. Med. Chem. 1998, 41, 4890.
- 5. Liu, L.; Hong, P.-C.; Huang, H.-L.; Chen, S.-F.; Wang, C.-L.; Wen, Y.-S. *Tetrahendron; Asymmetry* **2001**, *12*, 419.
- 6. Micouni, L.; Bonin, M.-P.; Mazurier, A.; Tomas, A.; Quirion, J.-C.; Husson, H.-P. *Tetrahedron* **1996**, *52*, 7719.
- 7. Bishop, W. R.; Bond, R.; Petrin, J.; Wang, L.; Patton, R.; Doll, R.; Njoroge, G.; Catino, J.; Shwartz, J.; Carr, D.; James, L.; Kirschmeier, P. J. Biol. Chem. 1995, 270, 30611.
- 8. Sepp-Lorenzino, L.; Ma, Z.; Rands, E.; Kohl, N. E.; Gibbs, J. B.; Oliff, A.; Rosen, N. *Cancer Res.* **1995**, *55*, 5302.
- 9. Strickland, C. L.; Weber, P. T.; Windsor, W. T.; Wu, Z.; Le, H. V.; Albanese, M. M.; Alvarez, C. S.; Cesarz, D.; del Rosario, J.; Deskus, J.; Mallams, A. K.; Njoroge, F. G.; Piwinski, J. J.; Remiszewski, S.; Rossman, R. R.; Taveras, A. G.; Vibulbhan, B. V.; Doll, R. J.; Girijavallabhan, V. M.; Ganguly, A. K. J. Med. Chem. 1999, 42, 2125.
- 10. Some predicted log P's using Pallas program from CompuDrug are as follows: **SCH 66336** (5.0), compound **4c** (4.5), compound **10d** (4.7).